2305.02063v1 [cs.DC] 3 May 2023

arXiv

GALOIS: A Hybrid and Platform-Agnostic
Stream Processing Architecture

Tarek Stolz
tarek.stolz@rwth-aachen.de
RWTH Aachen University
Aachen, Germany

ABSTRACT

With the increasing prevalence of IoT environments, the demand
for processing massive distributed data streams has become a criti-
cal challenge. Data Stream Processing on the Edge (DSPoE) systems
have emerged as a solution to address this challenge, but they often
struggle to cope with the heterogeneity of hardware and platforms.
To address this issue, we propose a new hybrid DSPoE architec-
ture named GALOIS, which is based on WebAssembly (Wasm) and
is hardware-, platform-, and language-agnostic. GALOIS employs
a multi-layered approach that combines P2P and master-worker
concepts for communication between components. We present
experimental results showing that operators executed in Wasm out-
perform those in Docker in terms of energy and CPU consumption,
making it a promising option for streaming operators in DSPoE.
We therefore expect Wasm-based solutions to significantly improve
the performance and resilience of DSPoE systems.

CCS CONCEPTS

« Information systems — Stream management.

KEYWORDS
Edge Processing, Data Stream Processing

ACM Reference Format:

Tarek Stolz, Istvan Koren, and Liam Tirpitz, Sandra Geisler. 2023. GALOIS:
A Hybrid and Platform-Agnostic Stream Processing Architecture. In The
International Workshop on Big Data in Emergent Distributed Environments
(BiDEDE °23), June 18, 2023, Seattle, WA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3579142.3594287

1 INTRODUCTION

Modern manufacturing environments produce tremendous volumes
of data at very high frequencies. For example, in fine blanking (an
industrial stamping process) a single production line can produce
data up to 6 GBit/s [10]. In our vision of an Internet of Production [2],
manifested by a large research cluster of excellence, the processing
and sharing of high-frequency machine data across organizations is
fundamental to enable large-scale near real-time analysis and fuel
digital shadows to facilitate smart manufacturing applications. How-
ever, the high degree of heterogeneity of machines, programmable
logic controllers, and network connectivity creates a challenging

BiDEDE °23, June 18, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in The International
Workshop on Big Data in Emergent Distributed Environments (BiDEDE °23), June 18,
2023, Seattle, WA, USA, https://doi.org/10.1145/3579142.3594287.

Istvan Koren
koren@pads.rwth-aachen.de
Chair of Process and Data Science,
RWTH Aachen University
Aachen, Germany

Liam Tirpitz, Sandra Geisler
{tirpitz,geisler}@cs.rwth-aachen.de
Data Stream Management & Analysis,
RWTH Aachen University
Aachen, Germany

environment for data processing. In addition, the increased number
of variants within production lines and ultimately also the need to
react quickly to incidents in light of sustainability and resilience ef-
forts demand fast and adaptive data stream management solutions.

Mature distributed stream processing (DSP) architectures, such
as Apache Storm or Twitter Heron, are available for several years
now and have proven to handle high amounts of streaming data.
They were designed to exploit the rich resources of nodes in data
centers on-site or in the cloud, distributing the workload to ho-
mogeneously equipped servers. Transmitting the data of multiple
production lines to a central data center leads to network conges-
tion and intolerable latencies for near real-time applications. Edge
processing architectures move parts of the data processing (oper-
ators) to the edge and the fog, close to the data sources [3, 21].
For edge environments, many challenges arise which are opposed
to those in the cloud [21]. For example, insecure, unstable, lim-
ited network connections and failing or moving devices create a
highly dynamic environment for data processing. Further, edge
devices have a high degree of heterogeneity in, e.g., hardware or
operating systems, and often have limited resources and battery
life. Distributed stream processing on the edge (DSPoE) systems are
designed to handle these issues. However, operators in DSPoEs are
often implemented language- or hardware-dependent which makes
these systems inflexible as well as hard to maintain and extend.
Additionally, DSPoEs usually rely on a centralized management
component leading to high communication overhead.

To address these challenges, we introduce GALOIS, a hybrid and
platform-agnostic stream processing architecture. Its architecture
is multi-layered to provide flexibility and distribute workload effi-
ciently, employing centralized as well as decentralized management
depending on the layer. Re-optimizations of the query execution
plan are propagated from lower to higher levels to reduce as much
communication overhead as possible with a central, overarching
master node. Furthermore, we use WebAssembly (Wasm), a new
byte code format that can be run on diverse hardware, to implement
operators in a hardware-, platform-, and language-independent
manner, providing the foundation of GALOIS, which we will dis-
cuss in more detail in the following.

The paper is organized as follows. In Section 2, firstly, the re-
quirements for a hybrid and hardware-agnostic DSPoE are ana-
lyzed. Based on these requirements, we present the design of the
GALOIS architecture in Section 3. In Section 4 a first prototype
implementing this concept is described, which is evaluated in Sec-
tion 5. Finally, in Section 6, we discuss the presented architecture
in light of the current state of the art and draw conclusions in
Section 7.

https://orcid.org/0009-0000-5735-4318
https://orcid.org/0000-0003-1350-6732
https://orcid.org/0000-0003-0049-8112
https://orcid.org/0000-0003-0049-8112
https://orcid.org/0000-0002-8970-6282
https://orcid.org/0000-0003-0049-8112
https://orcid.org/0000-0002-8970-6282
https://doi.org/10.1145/3579142.3594287
https://doi.org/10.1145/3579142.3594287

BiDEDE ’23, June 18, 2023, Seattle, WA, USA

2 REQUIREMENTS

In the following, we outline the key requirements that a DSPoE
system should meet to effectively operate within highly dynamic
environments, accommodating massive data streams and heteroge-
neous devices at the edge. These requirements have been derived
through a thorough analysis of edge environment characteristics
in manufacturing, as well as by examining the necessary attributes
and addressing unresolved challenges in existing DSPoE systems.
Platform-agnostic operator execution (R1): To accommodate the
diversity of edge environments, stream operators should be de-
signed for execution irrespective of hardware, language, and plat-
form constraints.
Native edge streaming and processing (R2): To enable fast response
times, the data should be streamed directly point-to-point between
processing edge devices without any intermediaries. Furthermore,
the execution of operators should take place on the edge level.
Network-aware management and administration (R3): The edge net-
work’s topology and properties, such as link quality and device
distance, should be considered during query processing to minimize
network-induced latencies and backpressure.
Global logical optimization (R4): Logical query optimization should
be done on a global level based on heuristics, as it will influence
the number and types of operators which are subsequently be dis-
tributed to edge nodes in operator placement.
Local physical optimization (R5): To leverage the latest, contextually
relevant information for query optimization and decrease commu-
nication overhead, physical query optimization should occur at the
same level as operator execution, thereby enhancing layer auton-
omy and modularity.
Spatial organization in cluster units (R6): The system should take
into account spatial constraints when deploying to and managing
edge devices. The system should prefer to deploy adjacent opera-
tors in dense accumulation points of edge devices (cluster units) to
establish the shortest possible communication paths.
Decentralized query reconfiguration (R7): If query plan adjustments
are necessary, these should be carried out in a decentralized and
independent manner without pausing the complete system.
Administrative escalation model (R8): Higher-level administrative
units in the architecture should only intervene when re-optimization
at lower levels is unfeasible.
Preventive fault tolerance (R9): Resilient fault tolerance is important
to elevate the robustness of a query. In the event of a client failure,
a query should be able to deliver results. This can be achieved by in-
creasing the robustness of a query through more selective operator
placement and providing multiple paths between operators [4, 18].
These core requirements inform the design of our architecture.

Resulting design decisions. As edge environments can be highly
dynamic, the metrics used for operator placement in DSPoEs may
already be outdated when the query plan has been deployed [16, 23].
Hence, the development of DSPoE systems is tending more and
more towards a decentralized deployment of queries and func-
tionalities [8, 23]. As a result, Pinchao et al. [16] organize edge
devices within a P2P network and perform query optimization not
at deployment time but at runtime. Because the query is optimized
incrementally, there is a lower risk that query execution is no longer

Stolz et al.

optimal as time progresses (R7). However, many P2P networks ab-
stract away from the underlying network topology, which can lead
to non-optimal operator placement [15, 19]. In order to achieve low
latencies, it is important that operators are positioned as close as
possible to the sources and adjacent operators are also positioned
in near vicinity to each other. Therefore, cluster-based methods for
organizing the underlying physical devices on the lowest level seem
to be a viable solution to this problem (R6, R3) [4, 5, 15, 17, 22].
In this context, Mobile Ad-hoc Networks (MANETS) are attractive,
as they enable cluster computing on the edge [15]. MobiStream [22]
defines fixed locations for clusters in MANETsS, but does not ac-
commodate dynamically forming, disappearing, and reorganizing
clusters. For this reason, clusters should support mobility and be
able to be registered autonomously (R6). For GALOIS , we opted
to organize spatially separated clusters in regions for scalability
and flexibility, similar to Mobile Storm’s concept [17] (R6). Further-
more, additional regions can be added and thus a spatial scaling as
in SpanEdge is enabled (R4,R8) [20]. Cluster-to-cluster communi-
cation and region-to-region communication overhead should be
kept as low as possible and implemented in a P2P fashion to provide
high flexibility and autonomy. Therefore, query operator execution
should be done on cluster and edge device level (R2) [15].

During query runtime, continuous query optimization shall be done
in the cluster which should be as autonomous as possible and only
be escalated upwards to managing nodes if necessary (e.g., due
to unresolvable overload situations) to reduce the administrative
overhead (R8) [23]. The query’s physical and logical optimization
should be divided between local and global layers, ensuring global
instances are not burdened with complete knowledge of the under-
lying edge devices and operators. Conversely, physical optimization,
heavily reliant on dynamic metrics, should be performed as close
as possible to the execution site (R6,R7).

To maximize fault-tolerance, GALOIS will use a probability model
superior to checkpoint- or replicant-based schemes [4] and select
only particularly fail-safe nodes in the operator placement (R9) [18]
making the architecture more robust.

Further, the architecture is designed to be extensible in terms of
different query languages similar to Calcite or Governor [1, 6]. Fi-
nally, to execute operators on a heterogeneous system landscape,
operators should be executable independent of hardware, platform,
and language. All DSPoE we are aware of to date are language-
dependent (R1) [12, 16, 17], which we address with the architecture
of GALOIS.

3 CONCEPT

Based on the requirements and design decisions explained in the
previous section, we conceptualized a system architecture, which
is described in detail in the following.

Figure 1 shows an overview of the various components in GA-
LOIS. The system is hierarchically structured, employing four levels
of communication [23] (R6). The lowest level is the Cluster Level
where nodes are organized in clusters and transfer tuples in data
streams. Clusters represent accumulation points of nodes that have
a physical proximity which is exploited (R2). Within the cluster,
the data streams are exchanged between the nodes. In Figure 1,
the clusters are represented as circles and network connections

GALOIS: A Hybrid and Platform-Agnostic
Stream Processing Architecture

Interchangeable Global Manager L,

Global logical

% B[Validator |+ Parser (| Log'ctailm?:‘:rry Strategy optimization
O
Logical Metadata)
Stream Query Store /i
y Manager /1 Master-Worker layer
anager Distributor

/]
/ Region Manager L,
API Hierarchic physical

)

& ~~ optimization
Cluster Manager L, .::’/,,f’/ “ P2P-layer)
\\ ”””””” /" /Region R, Cluster C‘"i
\ /
\ a5
\

“ Cluster layer
n

S

M=

Cluster C,,
Cluster C,,

Figure 1: The GALOIS architecture

as solid lines between the nodes, which are shown as black dots
in the clusters. Cluster-to-cluster data streaming is depicted as
solid lines between the clusters and is performed via gateways.
The yellow squares represent the Cluster Managers (CM) which are
interconnected by a P2P network (shown as a dashed ellipse) and,
if necessary, are communicating with the Region Manager (RM)
of their region (shown as a triangle). To increase scalability and
build local, independent subsystems, each cluster is assigned to a
RM. Regions can be defined based on the needs of the application,
e.g., by grouping geographically close clusters. The RM and GM
are organized in a master (GM) worker (RM) layer.

The Global Manager (GM, depicted as pentagon) is primarily
responsible for three tasks: (1) registration of logical data sources
(schema), (2) receipt of the logical query plan, and (3) logical query
optimization (R4). The registration of a schema can be done in two
ways: (1) either a human user registers the schema and the corre-
sponding data sources or (2) the data sources act autonomously
through corresponding interfaces and register themselves and their
schema. There are several formal query languages that can be
used to register and describe a query. Similar to Apache Calcite
or NebulaStream the GM should be able to support multiple lan-
guages [1, 23]. The optimizer in the GM can optimize the logical
query plan utilizing an optimization strategy. Unlike other systems,
no physical optimization is performed in the GM and a strict sep-
aration between logical and physical optimization is enforced. A
successfully deployed query is stored in the Query Manager of the
GM to enable multi-query optimization. Furthermore, the Query
Manager can provide the user with information about the currently
running queries and their state. The optimization strategy should
be easily interchangeable to allow different optimization strate-
gies, comparable to the Governor system [6]. After the query has
been optimized, it is divided into subqueries and sent to the Region
Managers (RMs) by the Distributor. In addition to the subqueries, in-
formation important for interregional communication is provided
to the RMs to enable interregional data transfer between nodes
in different regions. The splitting into subqueries is done using
metadata which is stored in the Metadata Store. These comprise
region-specific metadata, e.g., the source nodes in a region, region

)

BiDEDE 23, June 18, 2023, Seattle, WA, USA

performance statistics, such as free resource capacities, running
subqueries, or key metrics such as the average tuple throughput.
The Orchestrator monitors the region topology and the start of new
regions, which can be dynamically added or deleted.
Region Managers (RMs) are introduced as the next layer of abstrac-
tion and enable scalability and locality, by independently managing
groups of clusters. A region can be specified geographically or on
the basis of latency zones, for example, in order to identify the most
latency-optimal regions, similar to SpanEdge [20] (R3). It is as-
sumed that latency for geographically distant points is significantly
higher than for spatially closer nodes. The notion of proximity can
be defined on the implementation level and depends on the applica-
tion. Therefore, it is important that the subqueries are chosen such
that there is only as much cross-region communication as necessary.
The core task of the RM is to distribute the subqueries to the Cluster
Manager based on summary statistics, e.g., cluster-specific operator
throughput or average queue size. The RM distributes the logical
subqueries to the Cluster Manager accordingly and manages the as-
signment in the local query manager for possible reconfigurations
(R7). In addition, the RM also serves as a bootstrap node for clusters
that appear in the region providing the new Cluster Manager with
all necessary information to connect to the P2P network.
The Cluster Managers (CM) are organized in a P2P network. The
most important tasks of the CM are operator placement, collection
of metadata, monitoring of the GALOIS clients, and communication
with other CM within a P2P network to distribute workloads at
runtime. Based on the gathered metrics, subquery reoptimization is
organized autonomously by the CMs within the P2P network and
thereby metadata exchange is reduced (R8). Furthermore, the P2P
network should ensure that new clusters can be set up mobile (e.g.,
for vehicles or smartphones) and dynamically over time. Node fail-
ures in the cluster should not stop the processing of the entire query.
Thus, delays like in MobiStream (stop the hole query on failure)
have to be avoided [22]. At the lowest level of abstraction GALOIS
clients are located consisting of edge devices with the DSPoE client
installed. Each node is assigned to a cluster by node discovery. If
there is no CM nearby, an isolated node can take over the CM role
building a new cluster. The new cluster remains inactive until a
sufficiently large number of nodes are registered in the cluster (the
cluster size is configurable to reduce management overhead).
Beside being the CM (h), nodes can take six additional roles in a
cluster: Sleeper (s), Producer (p), Consumer (c), Replica (r), Gateway
(g), and Sink (z). This role scheme allows for probabilistic models
which assign roles according to reliability for fault tolerance [4].
Nodes which are not the CM are initialized as s nodes. Sleepers
do not yet have a differentiated role and are available to the CM
as a resource. As soon as the operators of a query are distributed
corresponding nodes get the producer (p) role assigned and which
are the source of a data stream. All subsequent operators in the
subquery are consumers (c) which are processing the data stream
incrementally. To implement a fault tolerance scheme nodes get
the role r (replica) assigned, which are statistically particularly
fail-safe. These nodes regularly check the c node assigned to them
and take over its functionality in the event of a failure. In order to
transfer data between clusters, cluster-to-cluster communication
is required; this functionality is provided by g nodes. They act as
gateways between the clusters. The z token is assigned to sink nodes

BiDEDE ’23, June 18, 2023, Seattle, WA, USA

by the CM, which provide APIs for data consumption by users or
applications. These node types and the general architecture are
realized in a prototypical implementation.

4 PROTOTYPE

In order to realize the requirement of platform independence in the
prototype, a form of abstraction is needed. Common solutions to en-
able platform independence are virtual machines or Docker contain-
ers. Since the stream operators should be executed on edge devices,
we target an execution environment requiring minimal resources
and startup effort. With the binary instruction format WebAssembly
(Wasm)!, especially suited for serverless scenarios [9], operators
can be executed as functions within the Wasm runtime environ-
ment. In literature, Wasm is regarded as a potential alternative
to Docker, especially in edge scenarios, as it proved to be more
memory-efficient than Docker [9, 13]. Hence, we implement the
stream operators in our system targeting Wasm to make their exe-
cution platform-, language-, and hardware-agnostic (R1). We chose
Rust as the implementation language also for the client and the
managers, due to its native Wasm support and integration, as well
as its ability to produce small binaries. However, any other language
could be chosen for the operators and the choice is independent of
the client and managers’ implementations.

The implementation of the first prototype followed a bottom
up approach, concentrating on the development of operators in
Wasm as a proof-of-concept. To test the operator execution, only
one cluster with multiple nodes is created. Data transfer between
nodes is implemented using Kafka, but will be replaced in the next
step by efficient inter-node communication. In the prototype, a
single server component represents GM, RM, and CM in unity
(GRC server). For scaling, the components can be separated later.
Currently, the GRC server comprises modules for query, schema,
and node management, as well as physical query plan creation
and a simple operator placement (R5). Additionally, Data Fusion is
integrated to execute logical query optimization. The components
will be complemented in the future with additional features, such
as cluster and resource management and fault tolerance protocols
including backpressure mechanisms suited for edge environments
(R9). The GRC server communicates with the nodes via server-sent
events (SSE) including the nodeID and the corresponding command.
Commands are also used to deploy operators to nodes after the
GRC server has completed the operator placement. The GRC server
is deployed as a Docker container in a Kubernetes cluster and the
workers run on Raspberry Pis model B Rev 1.5. Figure 2 provides an
overview of the most important components.

5 EVALUATION

In the preliminary phase of our research, we conducted an assess-
ment of the prototype system, with a primary focus on comparing
the performance of implementing operators in Wasm to that of
Docker containerization. This evaluation aimed to explore the dif-
ferences in latency, energy consumption, throughput, and CPU load
between the two approaches. Our hypothesis posited that Wasm,
due to its near-native exploitation of hardware characteristics and
reduced initialization overhead, would exhibit superior efficiency

!https://webassembly.org

Stolz et al.
GRC Server
<<DS>> <<DS>> <<DS>> <<DS>> <<DS>>
QueryList EventList SchemaProvider| | ExecPlanList NodeList
Data Fusion <<DSP>> <<DSP>> Cluster
Compute_physical_query Operator_placement
<<func>> <<func>> <<func>> <<func>> <<func>> <<func>>
Statement Schema Channel Node [Worker_shutdown| Query_shutdown
Worker
<<func>> <<func>> <<func>> <<func>>
Register Event_listener Kafka_listener Cli_args Raspi
aspi
<<DSP>> <<DSP>> Edge Client
Stream_processor| Setup_stream_processor
W <<WASM>> <<DS>> <<DS>>
asmer Operators Worker Channel
Il User Interface Kafka Interface Il Client-Server Interface ‘

Figure 2: Overview of the prototype and its components

in these performance metrics. The evaluation utilized the ELEC
dataset [14], comprising 45,312 tuples on half-hourly electricity
prices from New South Wales, Australia. It covers a period of 942
days and contains the following attributes: Date, Day, Period, NSW-
price, NSWdemand, VICprice, VICdemand, transfer. The evaluation
setup is shown in Figure 3.

GRC-Server WAN

LAN

P

Application DAG O

"
330 @30

Figure 3: Evaluation Setup

.Ih:lllﬂ))) ™

&8

U o¢

The setup comprises two Raspberry Pis 4, Model B Rev 1.5, run-
ning Linux raspberrypi 5.15.76-v8+ on 64-bit basis. They represent
the edge devices in one cluster to which operators can be distributed.
Besides the Raspberry Pis, a Windows 10 computer was used, which
acted as the producer, creating a data stream from the aforemen-
tioned dataset, running a local, dockerized Kafka instance. Further
two DollaTek UM25C USB power meters were used to record the
power consumption of the Raspberry Pis. The power meter were
connected to two separate smartphones as the monitoring software
only allows one Bluetooth connection to a power meter at a time.
The GRC server was deployed to the Kubernetes infrastructure of
the Internet of Production (IoP) located in a different network. A
continuous query, including a projection onto the date and period at-
tributes and 18 selection conditions (to increase query complexity),
was registered at the GRC server, which distributed the selections
to one Raspberry Pi and the projection to the second Raspberry Pi
to measure the processing costs for each operator individually. We
simulated varying system load, by generating tuples with different
data rates at the producer, specifically 125 T/s (Tuples/second), 500
T/s, and 1000 T/s. For each input rate, power consumption and CPU
load were measured at the edge devices, as well as throughput (T/s
at each operator and for the complete query), and query latency
(time of a tuple between entering and leaving the system).

5.1 Results

We present the results of the described experiments in the following,
where percentages indicate average values. Operator Processing

https://webassembly.org

GALOIS: A Hybrid and Platform-Agnostic
Stream Processing Architecture

Selection Energy Comparsion

334 ’:L‘
T P oo

T

3.17;\
T T

3.04

Watt (W)

2.99

\1000(15 X@Q«\s L s

\Na;m % 00‘«\“6‘ B N”sﬂ‘ - oaf-“‘e‘ - Nﬁam - 00;}.6‘ -

Figure 4: Energy Consumption Comparison

Time The Operator processing time (OPT) is the difference between
the timestamp directly before the execution of the operator and the
timestamp afterwards. Our experiments show, that for selection
Wasm outperforms Docker for each of the input rates with 9% less
OPT.

Power Consumption. Energy consumption is recorded in Watts
per second by the power meters at operator execution. Figure 4
contains six boxplots showing the power consumption of the se-
lection execution. On the x-axis the boxplots are labeled with the
experiments - each combination of execution environment (Wasm
or Docker) and input rate.

The energy consumption for the Docker experiment was 5.72%
higher than for Wasm at the 1000 T/s, 6.56% percent higher than for
Wasm at 500 T/s, and 10.09% percent higher than for Wasm at the
125 T/s input rate. CPU Load The average CPU load was recorded
as percentage of CPU Idle Time (CIT) during tuple processing only,
where higher values indicate a lower CPU load and vice versa. The
CPU load is considered as an indicator for the potential additional
workload for Docker virtualization. Figure 5 shows six boxplots
also labeled on the x-axis with the combination of execution envi-
ronment and input rate. On the y-axis the percentage of CIT during
selection execution is plotted. The CIT for the Wasm experiment
was 11.36% percent higher than for Docker at 1000 T/s, 18.89% per-
cent higher than for Docker at 500 T/s, and 23.05% percent higher
than for Docker at the 125 T/s input rate. The projection showed
no significant differences, only the standard deviation was smaller
for all measurements.

5.2 Discussion

Our results support the assumption that Wasm’s processing time
per tuple is more efficient than Docker’s due to its lower CPU
intensity. This efficiency stems from several factors: Docker runs
as a standalone process, managing its environment and virtual
network, while Wasm, embedded in Rust, only executes operators.
Despite expecting a more significant difference in selection, the
OPT remains relatively constant, possibly due to operational and
CPU limitations. Notably, Wasm’s OPT exhibits less fluctuation
for both operators compared to Docker, likely due to the latter’s
additional CPU overhead.

BiDEDE 23, June 18, 2023, Seattle, WA, USA

Selection CPU Comparsion

T
s e (]

80.0 1 ’l‘
rod

Idle CPU Time (%)

i< i 1 <1° 15 <10
Qo gof 500 0¥ S
N”aﬂ\’ c.\Le‘ . ‘N,asf“’ 005\& < \Nas"“’ o ot

Figure 5: Idle CPU Time Comparison

As expected, Docker consumes more power due to container-
ization overhead. Interestingly, the CPU and energy consumption
difference between Docker and Wasm decreases at higher input
rates, with the largest gap at 125 T/s. Further experiments are
needed to investigate the relationship between these differences
and input rates. Our results align with Hampau et al. [13], as Wasm
consumes less energy than Docker. The highest difference at 125 T/s
might result from Wasm’s better OPT and increased waiting time
for tuples, which vanishes at higher input rates due to backpressure.

The OPT, limited by CPU, could be reduced with multi-threading
but at the cost of increased energy consumption, presenting a trade-
off [23]. Our experiments aimed to evaluate Wasm’s feasibility as
a streaming operator library. Results indicate Wasm as a potential
lightweight, hardware-independent FaaS$ alternative to Docker for
DSPoE. We plan to extend the operator library, including standard
operators like joins and sophisticated features like machine learn-
ing. In-depth experiments will assess complex queries, operator
placement, query reoptimization, and communication costs. This
will provide a comprehensive assessment of the proposed operator
network’s effectiveness and benefits for data streaming.

6 RELATED WORK

The DSPoE systems NebulaStream, MobiStream, DART, Apache
Nifi, and MobileStorm are related systems that enable stream pro-
cessing employing concepts from edge computing [7, 16, 17, 22, 23]
and we analyzed them according our posed requirements. Many
of these systems, such as MobileStorm or Apache Nifi, use a cen-
tral administrative component, e.g., responsible for monitoring,
query distribution, client management, and fault handling, while
the clients only execute the operators. In contrast, DART uses a
purely decentralized approach and offloads many of the functions
to the individual clients organized in a P2P network. In GALOIS,
we employ a hybrid model to combine the best of both approaches,
offering high scalability and flexibility. Almost all of the above
systems use the Java Virtual Machine (JVM) as execution envi-
ronment for platform- and hardware-agnostic operator execution.
However, the JVM is not language-independent. NebulaStream uses
query compilation, i.e., queries are distributed to the edge devices
as generic query plans, where it is converted into a C++, com-
piled, and executed [12]. None of the discussed approaches are

BiDEDE ’23, June 18, 2023, Seattle, WA, USA

language-independent. Instead of relying on the JVM, the online
Wasm compiler presented by Groppe and Reimer [11] contributes
towards language-independent query processing in networks of
internet browsers, but does not focus on data stream processing.

Cloud-based Data Stream Processors (CDSP) have been widely
used and adapted as the basis for DSPoE systems in the past. How-
ever, most DSPoE systems in this area were developed in Java
lacking hardware- or language-independent execution of operators.
CDSPs also miss a concept for fault handling that fits the dynamics
of the edge environment and they usually do not allow runtime
optimization of queries, since the performance in the cloud is as-
sumed to be stable. Due to the contradictory requirements of cloud
and edge, it makes sense to develop a DSPoE framework which
does not to build on an existing CDSP.

7 CONCLUSION AND OUTLOOK

In this paper we present a new concept for a hybrid multi-layer
DSPoE architecture GALOIS. Its architecture facilitates cluster com-
munication on the edge using a P2P network concept enabling
re-optimizations on a local level and thereby reducing communi-
cation overhead. Also, nodes in a cluster can take different roles,
which will guide the operator placement. At the same time GA-
LOIS offers scalability by introducing a region management layer
containing several clusters and a global manager implemented in
a master-worker fashion. Opposed to existing DSPoEs, GALOIS is
hardware-, platform, and language-agnostic by using WebAssembly
as execution environment for streaming operators distributed to
the edge. We showed in experiments on a prototypical implementa-
tion of our architecture, that operator execution in Wasm is more
resource-efficient than in Docker in terms of Operator Processing
Time and CPU and energy consumption. The lower throughput
observed in our experiments can be attributed to the conserva-
tive use of the CPU, but this issue could be resolved in the future
by leveraging higher parallelism with multi-threading. To summa-
rize, Wasm represents a viable alternative to Docker for executing
operators in DSPoE environments. However, since Wasm is still
in development, it has some inherent limitations that need to be
considered. For example, it is currently not possible to pass Wasm
complex data objects without additional glue code. We plan to ex-
tend GALOIS by (1) expanding the Wasm stream operator library
to allow for more complex queries, (2) integrate a flexible QoS and
data quality monitoring to enable a dynamic re-optimization of
queries, (3) implement a full-fledged prototype including all hierar-
chy levels based on the envisioned communication infrastructure
also considering in-network processing.

ACKNOWLEDGMENTS

Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy - EXC-
2023 Internet of Production - 390621612.

REFERENCES

[1] Edmon Begoli, Jestis Camacho-Rodriguez, Julian Hyde, Michael J. Mior, and
Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources. In Proceedings of the 2018
International Conference on Management of Data (SIGMOD °18). ACM, 221-230.

[2] Philipp Brauner et al. 2022. A Computer Science Perspective on Digital Transfor-
mation in Production. ACM Trans. on Internet of Things 3, 2 (2022), 1-32.

Stolz et al.

[3] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. 2020. An overview on

edge computing research. IEEE Access 8 (2020), 85714-85728.

Mengyuan Chao and Radu Stoleru. 2020. R-MStorm: A Resilient Mobile Stream

Processing System for Dynamic Edge Networks. In 2020 IEEE International Con-

ference on Fog Computing (ICFC). IEEE, Sydney, NSW, Australia, 64-72.

[5] Mengyuan Chao, Chen Yang, Yukun Zeng, and Radu Stoleru. 2018. F-MStorm:
Feedback-Based Online Distributed Mobile Stream Processing. In 2018 IEEE/ACM
Symposium on Edge Computing (SEC). IEEE, Seattle, WA, USA, 273-285.

[6] Ankit Chaudhary, Steffen Zeuch, and Volker Markl. 2020. Governor: Operator
Placement for a Unified Fog-Cloud Environment. In Proceedings of the 23rd
International Conference on Extending Database Technology. EDBT.

[7] Rustem Dautov et al. 2017. Pushing Intelligence to the Edge with a Stream
Processing Architecture. In 2017 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). 792-799.

[8] Schahram Dustdar and Ilir Murturi. 2021. Towards IoT Processes on the Edge. In

Next-Gen Digital Services. A Retrospective and Roadmap for Service Computing of

the Future, Marco Aiello, Athman Bouguettaya, Damian Andrew Tamburri, and

Willem-Jan van den Heuvel (Eds.). Springer, Cham, 167-178.

Philipp Gackstatter, Pantelis A. Frangoudis, and Schahram Dustdar. 2022. Pushing

Serverless to the Edge with WebAssembly Runtimes. In 2022 22nd IEEE Interna-

tional Symposium on Cluster, Cloud and Internet Computing (CCGrid). 140-149.

René Glebke, Martin Henze, Klaus Wehrle, Philipp Niemietz, Daniel Trauth,

Patrick Mattfeld, and Thomas Bergs. 2019. A Case for Integrated Data Processing

in Large-Scale Cyber-Physical Systems. In Hawaii International Conference on

System Sciences 2019 (HICSS). 7252-7261.

Sven Groppe and Niklas Reimer. 2019. Code Generation for Big Data Processing

in the Web using WebAssembly. Open Journal of Cloud Computing (OJCC) 6, 1

(2019), 1-15.

Philipp M Grulich, Sebastian Bref3, Steffen Zeuch, Jonas Traub, Janis von Bleichert,

Zongxiong Chen, Tilmann Rabl, and Volker Markl. 2020. Grizzly: Efficient Stream

Processing Through Adaptive Query Compilation. In Proceedings of the ACM

SIGMOD International Conference on Management of Data (SIGMOD 2020). ACM.

Raluca Maria Hampau, Maurits Kaptein, Robin van Emden, Thomas Rost, and

Ivano Malavolta. 2022. An Empirical Study on the Performance and Energy

Consumption of Al Containerization Strategies for Computer-Vision Tasks on

the Edge. In The International Conference on Evaluation and Assessment in Software

Engineering 2022 (EASE 2022). ACM, New York, USA, 50-59.

Michael Bonnell Harries. 1999. Splice-2 Comparative Evaluation: Electricity Pricing.

University of New South Wales, School of Computer Science and Engineering.

Thomas Kunz, Silas Echegini, and Babak Esfandiari. 2020. A P2P Approach

to Routing in Hierarchical MANETs. Communications and Network 12 (2020),

99-121.

Pinchao Liu, Dilma Da Silva, and Liting Hu. 2021. DART: A Scalable and Adaptive

Edge Stream Processing Engine. In 2021 USENIX Annual Technical Conference

(USENIX ATC 21). USENIX Association, 239-252.

Qian Ning, Chien-An Chen, Radu Stoleru, and Congcong Chen. 2015. Mobile

Storm: Distributed Real-time Stream Processing for Mobile Clouds. In 2015 IEEE

4th International Conference on Cloud Networking (CloudNet). IEEE, Niagara Falls,

ON, Canada, 139-145.

[18] Dan O’Keeffe, Theodoros Salonidis, and Peter Pietzuch. 2018. Frontier: Resilient

Edge Processing for the Internet of Things. Proceedings of the VLDB Endowment

11, 10 (2018), 1178-1191.

Rafiza Ruslan, Ayu Shaqirra Mohd Zailani, Nurul Hidayah Mohd Zukri,

Nur Khairani Kamarudin, Shamsul Jamel Elias, and R. Badlishah Ahmad. 2019.

Routing performance of structured overlay in Distributed Hash Tables (DHT) for

P2P. Bulletin of Electrical Engineering and Informatics 8, 2 (2019), 389-395.

Hooman Peiro Sajjad et al. 2016. SpanEdge: Towards Unifying Stream Processing

over Central and Near-the-Edge Data Centers. In 2016 IEEE/ACM Symposium on

Edge Computing (SEC). 168-178.

[21] Blesson Varghese, Nan Wang, Sakil Barbhuiya, Peter Kilpatrick, and Dimitrios S

Nikolopoulos. 2016. Challenges and Opportunities in Edge Computing. In 2016

IEEE International Conference on Smart Cloud (SmartCloud). IEEE, 20-26.

Huayong Wang and Li-Shiuan Peh. 2014. MobiStreams: A Reliable Distributed

Stream Processing System for Mobile Devices. In 2014 IEEE 28th International

Parallel and Distributed Processing Symposium. IEEE, Phoenix, AZ, USA, 51-60.

[23] Steffen Zeuch et al. 2020. The NebulaStream Platform: Data and Application

Management for the Internet of Things. In 10th Biennial Conference on Innovative
Data Systems Research (CIDR ‘20). CIDR.

[4

—
)

[10

[11

[12

[13

[14

=
i)

[16

(17

=
)

[20

[22

	Abstract
	1 Introduction
	2 Requirements
	3 Concept
	4 Prototype
	5 Evaluation
	5.1 Results
	5.2 Discussion

	6 Related Work
	7 Conclusion and Outlook
	Acknowledgments
	References

